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A previous study showed that an increased number of 
chromosomes can result in a new type of epigenetic gene 
inactivation, thereby creating differences in gene-expression 
patterns (Mittelsten Scheid et  al., 1996). In CLT1, chro-
matin remodelling subunit (Cla005113), a member of the 
SWI/SNF complex regulating FLOWERING LOCUS C in 
Arabidopsis (Jegu et al., 2014), was upregulated. The absence 
or low expression of some transcripts in CLT1 might have 
been caused by gene silencing or gene loss associated in part 
with cytosine methylation. Certain genes were expressed only 

in allopolyploids of Arabidopsis suecica and wheat, and were 
not detected in the parents (Kashkush et al., 2002; Madlung 
et al., 2002). Most of the genes that are involved in sucrose 
and starch metabolism and ATP-binding activity have cell-
wall and cytoplasmic-specific cellular locations. Many critical 
pathways including those involved in amino acid biosyn-
thesis were altered in the tetraploid watermelon compared 
with Sugar Baby and CLD1. Our study also explained dif-
ferential expression patterns of several genes involved in 
energy-harvesting pathways. Several pathways including 

Fig. 6. Validation of products with AS of selected genes by semi-quantitative RT-PCR with unique sets of primers. The amplified products were obtained 
by PCR using location-specific forward and reverse primers (see Supplementary Table S7 for primer sequences and Fig. 5 for locations) to differentiate 
splice variants. The lanes from left to right are marker (M), leaf (L), stem (S) and fruit (F) of the diploid (CLD1) and tetraploid (CLT1), and genomic DNA 
(gD). Amplicons were the products of 26–34 cycles for different genes. Elongation Factor1 (Cla004730) was an internal control. Arrows indicate faint PCR 
products as well as very close amplicons.
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Fig. 7. Cumulative expression of loci with AS between diploid and tetraploid watermelon quantified by RT-qPCR. Validation of RNA-seq data and 
semi-quantitative RT-PCR by RT-qPCR. Three technical and three biological replicates were performed for leaf (L), stem (S), and fruit (F) tissues from the 
diploid and tetraploid. Expression of the calibrator sample (diploid leaf; CLD1-L) was set to 1. The expression of each gene is the cumulative value of all 
transcripts per se, and unique primer sets were designed in common exon region. Data are means±standard deviation from three biological replicates.

 by guest on D
ecem

ber 18, 2014
http://jxb.oxfordjournals.org/

D
ow

nloaded from
 

http://jxb.oxfordjournals.org/


Page 14 of 17 | Saminathan et al.

argininosuccinate synthases, glutamate dehydrogenase, and 
ornithine aminotransferase of the arginine biosynthesis path-
way; magnesium chelatase subunit, protoporphyrinogen IX 
oxidase, and protochlorophyllide reductase of chlorophyl-
lide synthesis; mannose-6-phosphate isomerase, mannose-
1-phosphate guanyltransferase, and glucose-6-phosphate 
isomerase of GDP mannose biosynthesis; and members of 
trehalose biosynthesis, starch and sucrose degradation were 
altered in autotetraploids.

The ‘one gene to one protein’ paradigm was rewritten with 
the discovery of intervening sequences in eukaryotic genes 
and further splicing of introns (Berget et al., 1977). AS gave 
rise to multiple transcripts through seven types of cotranscrip-
tional and post-transcriptional events. Different developmen-
tal cues and environmental signals could regulate AS in plants 
via many potential mechanisms (Reddy et  al., 2013). AS 
plays critical roles in abiotic stress (Arabidopsis SAD1), biotic 
stress (tobacco Toll-interleukin1 receptor N gene, Arabidopsis 
RPS4), hormonal regulation (Arabidopsis Serine/Arginine-rich 
protein), development (Arabidopsis transporter ZIFL1, maize 
Vp1, Arabidopsis SUA), flowering time (Arabidopsis MAF1 
and SVP), and the circadian clock response (Arabidopsis 
CCA1 and PRR9) in plants (Staiger and Brown, 2013).

Genome duplication along with AS could lead to proteome 
diversity in plants. However, little is known about the exist-
ence and significance of AS in autopolyploids. Our study 
showed that differential splicing occurred in 22 genes, includ-
ing phloem protein2, zinc-finger CCCH domain protein, 

nodulin family protein, gibberellin-regulated protein, and 
nitrate transporter. Spatial regulation of these genes was con-
firmed among different tissues. Specifically, RT-qPCR analy-
sis supported the existence of certain transcripts with AS in 
various tissues between the diploid and tetraploid (Fig. 8). We 
used RACE-PCR to further map the full-length transcripts 
of a few genes (nitrate transporter, zinc-finger CCCH domain 
protein, and fructokinase-like 2) between leaf and young fruit 
tissues. Most of the spliced variants distinguished in diploid 
and tetraploid plants were observed in fruit tissue rather than 
in the leaf and stem. Thus, AS between the diploid and tetra-
ploid plants occurred tissue specifically. Studies of Brassica 
allopolyploid showed that allopolyploidy generated myriad 
qualitative and quantitative differences in AS events, and sev-
eral thousand transcript forms with AS were gained or lost in 
polyploids (Tack et al., 2014).

In this study, we observed a few genes with tissue-specific 
splicing variants in synthetic autopolyploids. Deregulation of 
some important pre-mRNA splicing factors such as cleavage 
and polyadenylation specificity factor subunit, splicing fac-
tor subunit U2af, and pre-mRNA splicing factor (coiled-coil 
domain-containing protein Cwf18) might play roles in splic-
ing. In addition, factors such as histone acetyl transferase 
and RNA polymerase II were involved in AS. However, most 
of these factors showed expression in the range of 1.3–2.0-
fold change.

The response of the duplicated-genome dosage effect on 
expression per se has to be considered to accurately quantify 

Fig. 8. Quantitative expression of selected splicing variants of a few spliced loci of watermelon quantified by RT-qPCR. Validation of semi-quantitative 
RT-PCR results with use of RT-qPCR for splicing analysis. Three technical and three biological replicates were used for leaf (L), stem (S), fruit (F) tissues 
from diploid and tetraploid. A few genes for certain tissues lacked a CT value and are labelled as non-detectable (ND). The expression of any one of 
the samples was set to 1 for different genes. Primer sets were designed in exons with AS variants that were unique to certain transcripts. Data are 
means±standard deviation from three biological replicates.
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the transcriptome in allopolyploid plants (Coate and Doyle, 
2010). Previously, Guo et al. (1996) established a 1:1 dosage 
effect for the expression of many genes in maize autopoly-
ploid with the exception of negative dosage effects for a few 
genes. Because our research focus was a synthetic autopol-
yploid, we validated read numbers from RNA-seq with 
RT-qPCR results. In addition, the strength of our transcrip-
tome comparison between diploid and autotetraploids relied 
on the results of tissue-related AS. Our AS data qualitatively 
support the existence of splicing variants due to genome 
duplication in watermelon.

The critical question to answer is why we found no dif-
ference in fruit traits between the diploid and tetraploid. 
However, most of  the spliced variants we observed showed 
differences among the fruit tissues between ploidy levels. 
Similarly, several transcripts were downregulated in auto-
tetraploid fruits. Post-transcriptional regulation events and 
post-translational modifications in polyploids have been 
widely studied (Koh et  al., 2012). This phenomenon of 
post-transcriptional or translational modifications in poly-
ploids is termed transcriptomic shock (Buggs et al., 2009). 
Understanding why the whole-genome duplication did not 
alter fruit size would be of  interest. Transcriptome analyses 
over the fruit development of  diploid, triploid, and tetra-
ploid watermelons from pollination to maturity along with 
detailed qualitative trait observation would help clarify 
this issue.

To conclude, we provide evidence that autotetraploidiza-
tion can alter the transcriptome and modulate AS in water-
melon. This finding might help polyploid-plant biologists 
in general and cucurbit researchers specifically to further 
explore gene regulation among the autopolyploids.
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