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SUMMARY

Methods of estimating Smith’s band, thereby, optimum plot size are compared from a theoretical viewpoint.
For estimating b, generalized least squares is recommended over Smrr’s (1938) original method and other
methods because the points used to fit the required regression are correlated and have unequal variances.

Optimum plot size for once-over-harvest trials measuring yield (as number of fru!ls per plot) of pickling
and fresh-market cucumbers (Cucumis sarivis L) was estimated to I::e 0.7 to 3.8 m? (L5 to 2.5 m of row
for rows 1.5 m apart) for conventional harvesting, and 1.0 to 5.6 m* (0.7 to 3.7 m of row) for simulated
harvesting using paraquat to defoliate plots before evaluation. Estimates of optimum plot size were calculat-
ed from a number of uniformity trials difTering in vear (1982 or 1983), planting date (early or late), and
field. The estimates were sulficiently stable to suggest that they have useful generality.

For multiple-harvest yield trials, optimum plot sizes for determining yield of pickling (expressed in $/ha
or g/ha) or fresh-market cucumbers (i.e. USDA Fancy and No. | grade fruit combined or USDA Fancy,
No. 1, and No. 2 grade fruit combined, in g/ha} were estimated from experimental data to be 6.4 to 10.3
m? (4.3 to 6.8 m of row).

INTRODUCTION

Many considerations enter into the design of a field experiment, Some are dictated
by available resources, the requirements of equipment to be used, and other practical
matters. Blocking is often introduced to account for patterned environmental varia-
tion (known or suspected), or to establish convenient management units. However,
usually little attention is paid to optimizing plot size, that is, choosing plot size to
minimize cost per unit of information. (In experimental design terminology, ‘informa-
tion’ is the reciprocal of variance.) This is another aspect of dealing with environmental
heterogeneity. It1s an attempt to reconcile information on unpatterned environmental
variation with cost considerations.

Large numbers of families are usually evaluated in cucumber (Cucumis sativus L.)
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breeding trials, especially in the early stages of the inbreeding process. This increases
the importance of experimental efficiency. Optimum-plot-size calculations often rec-
ommend different plot sizes than might otherwise have been used; when smaller plots
are recommended, asis often the case, these calculations can lead to substantial savings
in labor and other costs. However, a concern about the value of optimum-plot-size
estimation is the degree to which optimum plot size depends on factors such as the
particular field, year, season (planting date), or trait of interest.

Our objectives in this study were as follows: First, to provide a brief unified synopsis
of the fragmented and often confusing literature on optimum-plot-size methodology.
Second, to compare, from a theoretical viewpoint, available methods for estimatiﬁg
optimum plot size, and to recommend one. And third, to apply the recommended
method to a variety of data sets for both pickling and fresh-market cucumbers, to
investigate the stability of optimum-plot-size estimates over fields, years, seasons,
crops, and harvesting methods, and, provided the estimates are reasonably stable,
to suggest appropriate plot sizes for cucumber breeding trials.

MATERIALS AND METHODS

Data. All data were collected at the Horticultural Crops Research Station near Clin-
ton, North Carolina. Uniformity trials were planted in different fields 22 July 1982
and 23 May 1983. Rows were seeded on raised, shaped beds 1.5 m apart center-to-
center using ‘Calypso’ and ‘Slicemaster’ as the pickling and fresh-market cultivars,
respectively. There were 6 rows of each cultivar, each row consisting of 25 plots, each
1.5 m long. Plots were thinned to 15 plants at the first-leaf stage, and harvested once-
over 2 and 9 September 1982 and 12 and 14 July 1983 for pickling and fresh-market
cucumber plots, respectively. All plots were harvested when approximately 10%, of
the fruits were oversized (diameter >51 mm for pickling cucumbers and diameter
~ 60 mm for fresh-market cucumbers). MiLLER & HUGHES (1969) found that that frac-
tion of oversized fruit coincided with the optimum stage for once-over harvest of pick-
ling cucumbers; we used the same criterion for harvesting fresh-market cucumbers
to standardize crop management practices. The yield of each plot was measured as
number of fruits.

In addition, for the once-oyer-harvest trials, two harvesting methods with different
labor requirements (costs) were compared. The conventional method involves hand-
pulling the plants and counting the fruits as they are separated from the vines. A faster
method, proposed by WEHNER et al. (1984), is to defoliate the plants with paraquat
“1]~_dimgm}ri-ai,-'-l’—bipyridinium ion), making the fruits visible without additional la-
bor.

Multiple-harvest yield trials were planted in different fields 19 April 1982 and 11
July 1983 for pickling and fresh-market cucumbers, respectively. Rows were seeded
on raised, shaped beds 1.5 m apart center-to-center, with 7 plots per row, each plot
6 m long. Trials were run as randomized-complete-block designs with 3 blocks of
35 lines for pickling and 28 lines for fresh-market cucumbers. Plots were thinned to
60 plants per plot (50 plants per plot for 1983 fresh-market cucumbers), and harvested
6 times. For pickling cucumbers, yield was measured as §/ha and q/ha. Dollar value
was calculated using $0.31, 0.14, and 0.09 per kg of grade 1, 2, and 3 pickling cucum-
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bers, respectively. North Carolina grades are determined by diameter, with grade 1
being 0 to 26 mm, grade 2 being 27 to 38 mm, and grade 3 being 39 to 51 mm in
diameter. Oversized fruits (diameter > 51 mm) are considered worthless because they
are not used commercially. For fresh-market cucumbers, yield was measured as-g/ha
of USDA Fancy and No. 1 grade fruit combined, and as q/ha of Fancy, No. 1, and
No. 2 grade fruit combined.

Estimation of Smith's b. Optimum-plot-size determination is founded on the ‘law’ pro-
posed by SwmiTH (1938). A loose argument for Smith’s ‘law’ is as follows: Given a
uniformity trial where the basic units (the smallest plots defined) have variance V,,
the mean of a random sample of x units has variance

V; = VU‘X, (I)

ignoring possible ‘corrections’ for the finite size of any uniformity trial and, therefore,
the finite number of plots that could be formed. Suppose, instead, contiguous plots
are combined. Because they are expected to be positively intercorrelated, means of
groups of x contiguous units should have larger varniance

= Vix® (2)

for some b, where 0 < b < 1. When b = 1, equations (1) and (2) are identical. Taking
logs of both sides, equation (2) becomes

log(Vy) = log(V,)—blog(x), (3)

the equation of a straight line describing the relationship between log(V; ) and log(x).
Equation (3) cannot be derived in any mathematically-rigorous way. SMITH arrived
at it by empirical observation, based on 44 uniformity trials on a wide array of crops.

He observed that if small plots were combined to form larger plots of first one size
(value of x) and then another and another, with Vx , the estimated (observed) variance
among plot means, calculated in turn for each plot size (x), then the apparent relation-
ship between log(V; ) and log(x) was quite linear, at least within the range of reasonable
plot sizes. That observation, encapsulated in equation (3), has become known as
Smith’s ‘law’. Despite its lacking a firm theoretical basis, Smith’s ‘law’ has proven
to be broadly applicable, and computer simulation by Pearce (1976) has given the
‘law’ added credibility.

The parameter b in equations (2) and (3) is widely known as Smith’s b. The slope
of a regression of log(V;) on log(x) provides an estimate of —b; that is, the negative
of the slope is an estimate of Smith’s b.

Smith’s b is often called the coefficient of soil heterogeneity, but it is more correctly
viewed as an index of the degree of correlation between neighboring plots; b = 1
indicates neighboring plots are uncorrelated, while b near 0 indicates they are highly
correlated. The magnitude of b reflects, in part, environmental heterogeneity, but in-
cludes that stemming from all sources (e.g., soil, rain, irrigation, fertilizer and herbicide
levels, and that inadvertently introduced by workers in the course of running the exper-
iment). When there is considerable fine-grained environmental heterogeneity, one ex-
pects correlation between neighboring plots to be small and b to be large. As seen
in equation (2), V; will be reduced more effectively by increasing x when b is large;
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that is, increasing plot size will be most beneficial when neighboring plots are nearly
uncorrelated. When neighboring plots are highly intercorrelated (small b), the benefits
of increasing plot size (x) will be slight. However, as BRiM & Mason (1959) noted,
b can be large when an area is either extremely, but randomly, heterogeneous or extre-
mely uniform, so b is not simply measuring environmental heterogeneity.

Koch & RIGNEY (1951) showed that b can be estimated from certain types of experi-
mental data (e.g., lattice, split-plot, and randomized-complete-block designs), provid-
ing an alternative to running a time-consuming and perhaps costly uniformity trial,
HATHEWAY & WILLIAMS (1958) gave an equivalent, but more convenient, formulation
of Kocr & RIGNEY’s approach, and stressed its applicability to uniformity trials as
well as experimental data. For uniformity trial data, variances of means of plots of
several sizes can be estimated by overlaying a fully-nested design onto the uniformity
trial and calculating the associated analysis of variance. Table 1 shows an example
of the analysis of variance for a nested design overlayed on any one of the uniformity
trials described in paragraph 1 of Materials and Methods. The 25th plot in each row
has been omitted and each of the 6 rows taken as 3 8-unit plots, repeatedly halved
to form subplots, subsubplots, and subsubsubplots of sizes 4, 2, and 1, respectively.
Throughout this paper, plot size is taken to be length along a single row; in other
contexts, plots of other shapes may be of interest and can be handled similarly.

From Table 1, variances of means of plots of size x = &, 4, 2, and |, respectively,
are estimated as

Vi = [SSA/17]/8 = MSA/S,

Vi = [(SSA + SSB)/35)/4,

V3 = [(SSA + SSB + SSC)/71]/2, and

V) = [(SSA + SSB + SSC + SSD)/143]/1,

providing 4 points for estimating b from the regression of log(Vx %) on log(x) without
explicitly forming plots of each of several sizes (x) and recomputing V— for each size
as SMITH proposed. The final divisor in Va for example, appears because MSA esti-
mates 8§ times the variance among means of plots of size 8, where Vg is | times that
variance. For the 36 plots of size 4, for example, the calculation of V4 uses the fact
that the sum of squares among these plots can be obtained as (SSA + SSB), and
the mean square with 35 df as’(SSA + SSB)/35, and so forth.

No matter whether they are obtained by SMITH's (1938) or HATHEWAY & WILLIAMS'
(1958) approach, the points used to estimate b present two problems, both recognized
by SmiTH, First, as plot size (x) increases, fewer plots can be formed, so the variance
among means of larger plots is not as well estimated as for smaller plots. SmiTH there-

(4)

Table . Analysis of variance for a nested design overlaid on a uniformity trial,

Source of variation d.f. Sum of squares Mean square
Plots of size 8 18-1 = 17 S5A MSA
Subplats of size 4 within plots 18(2-1 = 18 S5B MSB
Subsubplots of size 2 within subplots 18{2)(2-1) = 36 S8C MSC
Subsubsubplots of size | within subsubplots 18(2)(2)(2-1) =72 55D MSD
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fore recommended fitting the line used to estimate b by weighted least squares, weight-
ing points by their degrees of freedom (i.e., approximately proportionally to the recip-
rocals of their variances). Second, because the same data are (at least effectively) re-
combined in different ways to estimate variances of plots of different sizes, the points
used to fit the line are not independent. In fact, they may be highly correlated, and
weighting by degrees of freedom alone fails to account for this.

The important contribution of HATHEWAY & WiLLIAMS (1958) was showing how
to obtain quite easily an estimate of the variance-cqvariance matrix of the ng(V i
values for the several values of x, provided those V— s are calculated as in Table |
and equations (4). Their approach exploits the independence of sums of squares like
those shown in Table 1, the ease with which their variances can be calculated under
the usual normality assumption, and the way the V;’s are obtained in equations (4)
as simple linear combinations of the sums of squares.

Using HATHEWAY & WILLIAMS' (1958) estimate of the variance-covariance matrix
of the log(V x)'s, generalized least squares (GLS) can be used to calculate an estimate
of b that will be approximately the minimum variance unbiased estimate (often called
the best linear unbiased estimate or b.l.u.e.). There are both theoretical and practical
reasons for preferring GLS in estimating Smith’s b and, ultimately, optimum plot
size. When the variance-covariance matrix is known, AITKEN’s (1935) generalization
of the Gauss-Markov theorem on the theory of least squares assures us that GLS
is optimal. Even when the variance-covariance matrix must be estimated, provided
it can be estimated reasonably well, GLS still should be preferable to weighted (WLS)
or ordinary (OLS) least squares. Admittedly, when the same data are used in GLS
to estimate b as to estimate the variance-covariance matrix (the usual case), the GLS
estimator is not unbiased, but the bias should be very slight. More importantly, be-
cause the GLS estimator of b takes account both of the (very) unequal variances and
of the (large) covariances of the points used in estimating b, the GLS estimator should
have smaller mean squared error (variance plus squared bias) than the WLS or OLS
estimator, and be closer to the true (unknown) value of b. WLS and OLS estimators,
calculated under implicit (false) assumptions that the points are uncorrelated and,
for OLS, have equal variance, will be inefficient. Relative to the standard errors of
GLS estimates, those for WLS estimates will be inflated, and for OLS estimates even
more inflated. (See the Appendix for more mdthemaucal discussion and comparison
of these estimators.)

As a practical matter, more variable estimators are also more likely to give estimates
of b that are outside the allowable range 0 to 1, as one would expect and as has been
borne out in our experience and that of others (e.g., BRim & Mason, 1959). Values
outside the range 0 to 1 cannot be used to estimate optimum plot size by equation
(7) below.

For both theoretical and practical reasons, therefore, we recommend the GLS esti-
mator. From our uniformity trial data we estimate b by GLS using plot sizes x =
1, 2. 4 and 8 with plots formed and variances calculated as illustrated in Table | and
gquations (4). Although the estimates of b do not depend on whether common (base
10) or natural logs are used in the calculations, the reader is warned that the estimated
variance-covariance matrices used for GLS in the two cases do differ by a constant
multiple.
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For estimating b with data from a designed experiment, the procedure outlined
above for uniformity trials must be modified slightly to take account of the fact that
some degrees of freedom are used to estimate treatment effects (HATHEWAY & WIL-
LiAMS, 1958; KocH & RiGNEY, 1951). When the available data are from a randomized
complete block design, variances can be estimated for only 2 plot sizes, the basic plot
size In the design (x = 1)and the block size (x = 28 or 35 for our data). Block-treatment
interaction must be assumed to be negligible. With only 2 points, the method of fitting
the line 15 irrelevant (fitted by any method, the line must pass through both points),
and no standard error can be calculated for the estimate of b. More complex designs
(e.g., split plots and lattices) may provide 3 or more points for fitting the line by GLS
and permit calculating standard errors of the estimates (see HATHWAY & WILLIAMS,
1958, and KocH & RIGNEY, 1951, for examples).

Binns (1982) and SmiTH (1938) discuss modifying the calculations for estimating
V; and b when experimental plots are to be arranged in blocks (with added efficiency
from intrablock correlation), and to account for the finite size of the area providing
data for estimation. However, the importance of these ‘correction factors’ in estimat-
ing b is diminished under GLS since, as HATHEWAY & WILL1IAMS (1958) note, the terms
most affected are those given smallest weight by the GLS procedure. Furthermore,
the effect of these adjustments becomes less as the number of plots per block increases,
and that number is likely to be large in cultivar yield trials. For both reasons, we
omit these complicating correction factors from all our calculations.

Optimum plot size determination. Having estimated b, to estimate optimum plot size
one must introduce cost considerations. Although it is always true that larger plots
provide more information per plot than smaller plots, the apparent advantage of larger
plots fades when costs are taken into account. If costs of a plot are partitioned into

K, = cost per plot for costs that do not depend on plot size, and
K; = cost per unit area for costs that increase with plot size
= additional cost for each unit increase in plot size, then

total cost of a plot of size x = K; + Kx. (5)

The size of the unit depends on the data to be used. It was 1.5 m and 6 m of row
length for our uniformity trial and experimental data, respectively. K; and K; can
be obtained by summing costs in the two categories, or as the intercept and slope,
respectively, of the line relating total cost of a plot (y-axis) to size of the plot, expressed
in number of units (x-axis).

From equations (2) and (5),

information = 1/variance = 1/(V,/x*) = x*/V,,
so cost per unit of information is
(K + Kax)/(x°V)) = V(K + K;x)/x". (6)

Setting the derivative of (6) with respect to x equal to zero and solving, one finds
that X, the value of X that minimizes cost per unit of information, is

Xopm = bKlf[(l_b)KI]m {T)
426 Euphytica 35 (1986
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and is in the same plot-size units used in determining K, and K, and in estimating
b. That is to say, X, is some multiple of the basic plot size. For example, X, =
2 means that the optimum plot size is twice the size of the smallest plot used in estimat-
ing b. No matter how b is estimated, equation (7) is used to calculate x,,. Equation
(7) shows that the optimum plot size is an increasing function both of b and of the
ratio of costs K;/K,. This agrees with intuition. When b is very small (neighboring
plots highly correlated), little is gained by combining small plots to form large ones;
the gain in information is unlikely to be commensurate with the increase in costs,
In the extreme case wherein b = 0 (variances and covariances of neighboring plots
all equal), the V— of equations (4) are equal in expectation for all x, that is, there
15 zero increase in information with increased plot size. In the other extreme case where-
in b = 1 (neighboring plots uncorrelated), doubling the plot size should halve the
variance among plot means and thereby double the information per plot as shown
in equations (1) and (2), but at (presumably) less than double the cost, so larger plots
are advantageous. With respect to K, /K, when K, < <K (small ratio), costs are large-
ly proportional to plot size, favoring smaller plots. When K, > > K, (large ratio), there
is relatively little added cost in increasing plot size, favoring larger plots.

One can see from equation (7) that it is especially important when b is large to
have as good an estimate of b as possible. When b is large, the estimate of optimum
plot size is particularly sensitive to minor differences in the estimate of b, which are
amplified in b/(1-b).

RESULTS AND DISCUSSION

Once-over-harvest trials. Table 2 gives estimated costs for determining number of fruits
per plot in a once-over harvest for both conventional hand-pulled plots and paraquat-
defoliated plots. Table 3 displays the GLS estimates of b obtained from the 4 uniformity
trials, the standard errors (S.E.’s) of these estimates, and the estimates of x,;, and opti-
mum plot size obtained using the GLS estimates of b and the costs from Table 2.

Table 2. Labor costs (worker-hours) fi ur a once-over-harvest trial measuring vield in pickling or fresh-market
cucumbers using 2 harvesting methods',

Conventional hand-pulled plots  Paraquat-defoliated plots

Operation K, Ka K, K,
Field plan/Data sheets 0.008 0 0.008 0
Seed packeting/Stakes 0.007 0 0.007 0
Field layout/Planting 0.012 0.036 0.012 0.036
Thinning/Stand counting 0.005 0.024 0.005 0.024
Harvesting/Data collection 0.011 0.060 0.011 0.021
Data analysis 0.007 0 0.007 0
Subtotal 0.050 0.120 0.050 0.081
Total 0.170 0.131

! Basic plot size is 2.25 mz{l.S m of row for rows 1,5 m apart).
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Table 3. Estimates of b, x.p, and optimum plot size for yield (i.e., number of [ruits per plot) in once-over
harvest of pickling or fresh-market cucumbers, based on uniformity trial data’.

Cucumber Year GLS S.E Conventional Defoliation
Lype estimate® of GLS  harvesting harvesting
of b estimate
x,,p.la est, of opt. Xq P[3 est. of opt.
plot size plot size
(m®) (m?)
Pickle 1982 0.523 0111 0.46 1.0 0.68 1.5
1983 0.801 0.118 1.68 38 248 5.6
Fresh-market 1982 0.615 0.104 0.67 1.5 0.99 22
1983 0.419 0,105 0.30 0.7 0.45 1.0

! Basic plot size is 2.25 m? (1.5 m of row for rows 1.5 m apart).

? Obtained by estimating variances of means of plots of different sizes by the method of HaTHEWAY &
WILLIAMS (1958), with b estimated by peneralized least squares (GLS).

* Multiple of basic plot size.

Estimates of optimum plot size for conventional once-over harvesting of pickling
and fresh-market cucumbers were found to range from 0.7 to 3.8 m* (0.5 to 2.5 m
of row). Estimates of optimum plot size under the simulated once-over harvesting
using paraquat to defoliate the plots before evaluation were predictably higher, con-
sistent with reduced K, (costs dependent on plot size) and thus increased cost ratio
K,/K,. For herbicide-defoliated plots, estimates of optimum plot size range from 1.0
to 5.6 m? (0.7 to 3.7 m of row).

The optimum-plot-size estimates reported in Table 3 vary surprisingly little, consi-
dering that the trials differed in crop, year, field, and season. They are sufficiently
stable to suggest that estimates of optimum plot size for cucumbers have useful general-
ity. This is true, in part, because one has some latitude in the choice of plot size. SMITH
(1938) showed graphically that using plot sizes within the range 0.25 (X,p) to 4(X )
will be at least 75%, cost-efficient for values of b likely to occur in practice, where
cost-efficiency is the relative cost per unit of information obtained with the optimum
plot size and with another plot size. Beyond this range, cost-efficiency can drop quite
quickly. So, because estimates of b often have large standard errors, it is still important
to use the best estimator available. When b is small, one should especially avoid using
excessively large plots. When b is large, plots that are much smaller than the optimum
size are most disadvantageous (cost-inefficient).

Our estimates of optimum plot size are consistent with the estimate 3.6 m* reported
by Smitr & Lower (1978) for evaluating yields of pickling cucumbers by once-over
harvest. Their data were from a single field planted in spring 1975. They used Koch
& RIGNEY's (1951) method (which uses ordinary least squares in estimating b) with
plot sizes x = 1, 3, and 27 single-row sections 2.4 m long (1.5 m between rows), but
noted that the point calculated for x = 27 fell below the line through the other two
points. We initially used plot sizes x = 1, 2, 4, 8 and 24; when the point for plot
size x = 24 (whole row) was included, the standard errors of even the GLS estimates
of b often increased by 25 to 35%,. despite the fact that the GLS procedure assigned
this point smallest weight in the calculations. It seems advisable to restrict attention
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to reasonable plot sizes, not just because they are realistic, but because so few very
large plots can be formed that (i) the variance among their means is poorly estimated,
and (1) omitting ‘finite population correction factors’ from the calculations (Biws,
1982; SmiTH, 1938) is probably not justifiable.

Multiple-harvest trials. Tables 4 and 5 give labor costs, estimates of b, and estimates
of X and optimum plot size for multiple-harvest trials to determine $/ha and q/ha
for pickling cucumbers, and q/ha of USDA Fancy and No. 1 grade fruit combined
and g/ha of USDA Fancy, No. 1, and No. 2 grade fruit combined for fresh market
cucumbers. As discussed earlier, estimates of b are based on only 2 plot sizes (x =
I and x = 28 or 35, here) for data from randomized-complete-block design vield trials.
No standard errors can be calculated with only 2 plot sizes, and, based on our experi-
ence and that of SmiTH & Lower (1978) with very large plot sizes (see preceding para-
graph), these estimates of b should be viewed as rough estimates. In fact, the estimates
of b from the 1982 fresh-market cucumber data exceed 1, and Xgp 18 DOt calculated.
The calculations reported in Table 5 recommend plot sizes of 6.4 to 10.3 m?* (4.3 to
6.8 m of row for rows 1.5 m apart) for multiple-harvest yield trials such as these.

In general, different dependent variables may have different optimum plot sizes,
although thatis not very evident in Table 5 because the dependent variables we consid-
ered are highly correlated. When there are several dependent variables of interest,
one may have lo estimate optimum plot size for each of the variables, and then use
a compromise plot size.

Final comments and conclusions. The cucumber-breeding program at North Carolina
State University now uses 2 replications of plots that are 1.5 m of row (rows 1.5 m
apart) for testing in early generations. This is determined in part by limited seed sup-
plies, using 60 seeds of the approximately 100 seeds obtained from each family. For
multiple-harvest trials, plots that are 6 m of row (rows 1.5 m apart) are now used
in 2 seasons with 3 replications in each. These plot sizes fall within the ranges of opti-
mum-plot-size estimates obtained here, and provide sufficient numbers of fruits for

Table 4. Labor costs (worker-hours) for a multiple-harvest trial measuring vield in pickling and fresh-market
cucumbers'.

Operation Pickling cucumbers Fresh-market cucumbers
K, Ka K K;

Field plan/Data sheets 0.037 0 0.037 1]

Seed packeting/Stakes 0.02% 0 0.029 ]

Field layout/Planting 0.099 0.053 0.09% 0.053
Thinning/Stand counting 0.004 0.015 0.004 0.015
Harvesting 0113 0.230 0.102 0.207
Grading/Weighing/Analysis 0,200 0.086 0.206 0.094
Subtotal 0.482 0.384 0.477 0.369

Total 0.866 0.846

! Basic plot size is 9 m* (6 m of row for rows 1.5 m apart),

Euphytica 35 {1986) 429



W.H. SWALLOW AND T, C. WEHNER

Table 5. Estimates of b, X, and optimum plot size for multiple harvest of pickling and fresh-market
cucumbers, based on experimental data’.

Cucumber Year Measure Estimate xnpf Estimate of
type of ;.fielu:ls2 of b optimum plot size
(m?)
Pickle 1982 %/ha 0.475 1.14 10.3
q/ha 0.362 0.71 f.4
1983 $/ha 0.428 0.94 8.5
q/ha 0.393 0.81 7.3
Fresh-market 1982 g/ha(F+1) 1.606 - -
gha(F+1+2) 1135 - -
1983 q/ha (F+1) 0.458 1.09 9.8
g/ha(F+1+42) 0432 0.98 8.8

! Basic plot size is 9 m’ (6 m of row for rows 1.5 m apart).

2 For pickling cucumbers, §/ha was calculated using values $0.31, 0.14, and 0.09 per kg of grade 1, 2, and
3 fruit, respectively. Fresh-market cucumbers were graded as Fancy (F), No. | (1), and MNo. 2 (2) before
weighing.

3 Multiple of basic plot size.

determination of all of the characters measured in the trials. Practical considerations
(e.g., limited seed supplies, requirements of equipment) always influence experimental
planning. However, when feasible, it seems only sensible to estimate economical or
optimum plot size, and to consider that factor too in the planning process.

We recommend the generalized least squares (GLS) approach of HATHEWAY & WIL-
L1aMs (1958) for use in estimating Smith’s b and, thereby, optimum plot size. Its merits
warrant the added complexity. In some applications, the estimates of optimum plot
size will not be very good, no matter what method of estimation is used. In such cases,
one may be tempted to argue that, if you cannot obtain a good estimate anyway,
you might as well use an easier method. On the contrary, the importance of using
the best method available is greatest then. Because the points fitted in estimating b
have unequal variances and are correlated, the theoretical appropriateness and practi-
cal advantages of GLS justify the extra computation it requires.

APPENDIX

Familiarity with matrix algebra is increasingly widespread (see, e.g., SEARLE (1966)).
and it is helpful in making a concise comparison of the OLS, WLS, and GLS estimators
of Smith’s b, and in clarifying some of the required computations. The following dis-
cussion is for the case where b is to be estimated from uniformity trial data with the
variances of means of plots of different sizes estimated as suggested by KocH & RIGNEY
(1951) and HATHEWAY & WILLIAMS (1958), and as illustrated in the example of Table
| and equations (4). The same example will be continued. 1f the variances are to be
estimated from experimental rather than uniformity trial data, minor modifications
are necessary to account for the fact that some degrees of freedom are used to estimate
treatment effects; these modifications are discussed by KocH & RiGNEY (1951) and
by HATHEWAY & WiLLIAMS (1958).
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If S plot sizes are being considered (S = 4 in our example), we can write

Yo = {Iﬂg(ﬁ b} forx =38,4,2,1
'lng(\iﬂ
Iﬂg(\fg}
log(Vs)
_Iﬂg{‘ﬁ )
Xse = [1 {logx)}] forx = 8,4,2, 1

1 log(8)
1 log(4)
1
]

for the example,

log(2) for the example,

log(1)

1 being an Sx1 vector of 1's. The vector of parameters is

a
I}lxl = b} ¥

where a and b are the intercept and slope, respectively, of the line described by equation
(3). The negative of the slope b, the second element of b, is Smith’s b which we wish
to estimate.

The OLS estimator of the slope b, recommended by KocH & RIGNEY (1951), is
the second element of .

ﬁm_s = (KrX}_lX’Y.

This estimator takes account of neither the unequal variances nor the covariances
among the elements of Y.

For WLS, weighting each observation by its degrees of freedom, we can define the
5x8 diagonal matrix of degrees of freedom by

Wes = D{df,} fori = l,...,s

17 0 0 0
0 18 0 0

= | & ‘o 36 for the example,
0 o0 0 72

For observations (elements of Y) which themselves are logarithms of variances, weight-
ing by degrees of freedom is, to a first approximation, welghting each observation
proportionally to the reciprocal of its variance. The WLS estimator of the slope b
15 then the second element of

BWLS = (X:w K ]_l X’WY+

This still fails to take account of the non-independence (covariances) of the elements
of Y.

HATHEWAY & WILLIAMS (1958) provide a V', an approximation (estimate) of V-,
the inverse of the variance-covariance matrix of the observations. For our example,
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provided natural logarithms are used throughout, this is the 4 x 4 matrix HATHEWAY
& WiLLIaMS show at the bottom of their p. 212, modified as directed in the first sentence
of p. 213. As HATHEWAY & WILLIAMS note, an easy and important check that V-
has been correctly calculated is to verify that the elements of V! sum to half the cor-
rected total degrees of freedom [(144-1)/2 = 71.5, for our example]. The approximate
GLS estimator of the slope b is the second element of

EGLS = (X’{F"X}'l?{"f’"‘f’,
The 2x2 variance-covariance matrix of the elements of bg s is estimated by
Vﬂl’(gﬁt.s} =(XVIXY,

with the standard error of the GLS estimate of Smith’s b being the square root of
the lower-right-hand element of (XV1X). Only the GLS estimator of Smith’s b takes
account of both the unequal variances of the points used to estimate b and, through
the non-zero off-diagonal elements of V-, their lack of independence.
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